অনুশীলনী - 12.3
1. a = 1 হ'লে তলৰ বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰা :
(i) 2a + 1
= 2(1) + 1
= 2 + 1
= 3
= 2(1) + 1
= 2 + 1
= 3
(ii) a2 - 2a + 1
= (1)2 - 2(1) + 1
= 1 - 2 + 1
= 0
(iii) (a + 3) / 4
= (1 + 3) / 4
= 4 / 4
= 1
= (1 + 3) / 4
= 4 / 4
= 1
(iv) (1/2)a - 4
= (1/2)(1) - 4
= 1/2 - 4
= 1/2-8/2
= -7/2
(v) a3 + a2 + a - 1
= (1)3 + (1)2 + 1 - 1
= 1 + 1 + 1 - 1
= 2
2. x = -3 হ'লে তলৰ বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰা :
(i) x2 + 4x + 3= (-3)2 + 4(-3) + 3
= 9 - 12 + 3
= 0
(ii) 2x2 + x + 3
= 2(-3)2 + (-3) + 3
= 2(9) - 3 + 3 = 18 - 3 + 3
= 18
(iii) x3 - x2 + 1
= (-3)3 - (-3)2 + 1
= -27 - 9 + 1
= -35
(iv) 3x + 1
= 3(-3) + 1
= -9 + 1
= -8
3. x = 1 হ'লে আৰু y = -1 হ'লে তলত দিয়া বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰা :
(i) x2 + xy + y2
= (1)2 + (1 × -1) + (-1)2
= 1 - 1 + 1
= 1
(ii) x2 + y2
= (1)2 + (-1)2
= 1 + 1
= 2
(iii) x2 - y2
= (1)2 - (-1)2
= 1 - 1
= 0
(iv) x2 + y + 1
= (1)2 + (-1) + 1
= 1 - 1 + 1
= 1
4. তলৰ ৰাশিসমূহ সহজ কৰা আৰু x = -2 হ'লে মান নিৰ্ণয় কৰা :
(i) x2 + x + 7 + x + x2 - 1= 2x2 + 2x + 6
যদি x = -2 হয়,
যদি x = -2 হয়,
তেন্তে: 2(-2)2 + 2(-2) + 6
= 2(4) + (-4) + 6 = 8 - 4 + 6
= 10
(ii) 3x - (2x - 1)
= 3x - 2x + 1
= x + 1
যদি x = -2 হয়,
যদি x = -2 হয়,
তেন্তে: (-2) + 1 = -1
(iii) x3 + 2x2 - x2 + 2x + 1
= x3 + x2 + 2x + 1
যদি x = -2 হয়,
যদি x = -2 হয়,
তেন্তে: (-2)3 + (-2)2 + 2(-2) + 1
= -8 + 4 - 4 + 1 = -7
(iv) (x2 + x) - (2x2 - x + 1)
= x2 + x - 2x2 + x - 1
= -x2 + 2x - 1
যদি x = -2 হয়,
যদি x = -2 হয়,
তেন্তে: -(-2)2 + 2(-2) - 1
= -4 - 4 - 1 = -9
(v) 3x - 4(x - 5)
= 3x - 4x + 20
= -x + 20
যদি x = -2 হয়,
যদি x = -2 হয়,
তেন্তে: -(-2) + 20
= 2 + 20 = 22
(ii) xy + yz + 2x
(iv) 5 - 3x + 2y - 7x + 6y + 2 + z
5. তলৰ ৰাশিসমূহ সৰল কৰা আৰু মান নিৰ্ণয় কৰা যদি x = 2, y = -3 আৰু z = -1 হয় :
(i) 2x + y - z + 3x - 3y + z= 5x - 2y
যদি x = 2, y = -3, z = -1 হয়,
যদি x = 2, y = -3, z = -1 হয়,
তেন্তে: 5(2) - 2(-3)
= 10 + 6
= 16
(ii) xy + yz + 2x
= 2(-3) + (-3)(-1) + 2(2)
=-6 + 3 + 4
= -6 + 7
= 1
(iii) 2x2y + xy2z + 3xyz + 6x2y - 2xy2z - 6xyz
⇒ 2(2)2(-3) + (2)(-3)2(-1) + (3)(2)(-3)(-1) + 6(2)2(-3) - 2(2)(-3)2(-1) - 6(2)(-3)(-1)
⇒ 2(4)(-3) + 2(-9)(-1) + 3(2)(-3)(-1) + 6(4)(-3) - 2(2)(-9)(-1) - 6(2)(-3)(-1)
⇒ -24 + 18 + 18 - 72 - 36 - 36 = -132
⇒ 2(2)2(-3) + (2)(-3)2(-1) + (3)(2)(-3)(-1) + 6(2)2(-3) - 2(2)(-3)2(-1) - 6(2)(-3)(-1)
⇒ 2(4)(-3) + 2(-9)(-1) + 3(2)(-3)(-1) + 6(4)(-3) - 2(2)(-9)(-1) - 6(2)(-3)(-1)
⇒ -24 + 18 + 18 - 72 - 36 - 36 = -132
(iv) 5 - 3x + 2y - 7x + 6y + 2 + z
= -10x + 8y + z + 7
যদি x = 2, y = -3, z = -1 হয়,
যদি x = 2, y = -3, z = -1 হয়,
তেন্তে: -10(2) + 8(-3) + (-1) + 7
= -20 - 24 - 1 + 7
= -38
(v) (2x + y + z) - (z - 3y) + (2 + x) - (5 - z)
⇒ [(2×2) + (-3) + (-1)] - [(-1) - 3(-3)] + [2 + 2] - [5 - (-1)]
⇒ [4 - 3 - 1] - [-1 + 9] + [4] - [5 + 1]
⇒ [0] - [8] + [4] - [6] = -10
⇒ [4 - 3 - 1] - [-1 + 9] + [4] - [5 + 1]
⇒ [0] - [8] + [4] - [6] = -10
6. x = 0 হলে যদি x2 + 2x - p + 1 = 6, তেন্তে p ৰ মান নিৰ্ণয় কৰা ।
সমীকৰণটো হৈছে: x2 + 2x - p + 1 = 6
যদি x = 0 হয়, তেন্তে:
02 + 2(0) - p + 1 = 6
⇒ 0 + 0 - p + 1 = 6
⇒ -p + 1 = 6
⇒ -p = 6 - 1
⇒ -p = 5
⇒ p = -5
যদি x = 0 হয়, তেন্তে:
02 + 2(0) - p + 1 = 6
⇒ 0 + 0 - p + 1 = 6
⇒ -p + 1 = 6
⇒ -p = 6 - 1
⇒ -p = 5
⇒ p = -5
______________
_______________
No comments:
Post a Comment
Please do not enter any spam link in the comment box.